Inimmune

Our Focus: Discovery & development of disease modifying immunotherapies

Our Science: Novel compounds designed to target relevant pathways of the innate immune system and drive a therapeutic response

Clinical Applications:

<table>
<thead>
<tr>
<th>Allergy</th>
<th>Oncology</th>
<th>Vaccine Adjuvants</th>
<th>Infectious Diseases</th>
<th>Autoimmune Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-modifying therapy to stop allergy symptoms before they begin</td>
<td>Activating a patient’s immune response to fight cancer</td>
<td>Developing new classes of vaccine adjuvants to treat a broad range of diseases and conditions</td>
<td>Enhancing vaccine responses through precise immune stimulation</td>
<td>Preventing the progression of autoimmune diseases by interrupting the root cause of immune system malfunction</td>
</tr>
</tbody>
</table>
The Inimmune Difference: Global leaders in innate immune modulator development

- Company formed in 2016 by former GSK Adjuvant Discovery and Development Team
- Over 20 years of experience in immuno-modulatory drug discovery and development
- Strong external funding and IP generation >$150 M in NIH Contracts and 20 patents in the past 10 years
- Expertise from discovery through clinical implementation

- Synthetic molecule design and synthesis
- Formulation and analytical chemistry
- Preclinical vaccine models, MOA, efficacy, tox
- Candidate selection, process development, scale-up, analytics, and regulatory QA/QC
Deep Immunotherapy Pipeline

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Preclinical</th>
<th>cGMP/Tox/IND</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INI-2004 (TLR4 Agonist) Seasonal Allergic Rhinitis (AR)</td>
<td></td>
<td></td>
<td></td>
<td>Clinical stage</td>
</tr>
<tr>
<td>INI-4001 (TLR7/8 Agonist) Cancer Immunotherapy</td>
<td></td>
<td></td>
<td></td>
<td>TLR agonists</td>
</tr>
<tr>
<td>Opioid Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS Vaccine Adjuvant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAC478 Vaccine Adjuvant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INI-1098 Vaccine Adjuvant & Cancer Immunotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2023 Inimmune Corp. | Non-Confidential
Changing the Landscape of Immunotherapy: Allergy

The Challenges:

- Symptomatic treatments: anti-histamines and intranasal corticosteroids
- Only disease-modifying therapy is allergen-specific immunotherapy (AIT):
 - Long-term treatment (3 to 5 years)
 - Low patient adherence and high patient costs
- Years after the approval of intranasal steroids and AIT, no significant increase in patient quality of life has been achieved

The Solution: INI-2004

- INI-2004 is a disease-modifying therapy for allergies with the potential to be curative
- Intranasal INI-2004 Phase I trial in progress for treatment of allergic rhinitis
- Numerous follow-on indications such as food allergies, rapid protection against upper respiratory tract infections, and oncology

1DelveInsight, Allergic Rhinitis (AR), Market insight, epidemiology, and market forecast - 2032; Year 2023
INi-2004 is potentially curative due to re-programming the immune response

Typical Allergic Response to Allergen

Sensitization

INi-2004 Redirects Response to Allergen

Re-exposure

Environment
Submucosa

Allergen-specific IgE

Mast cell degranulation

Clinical Effects: Rhinitis, Asthma, & Urticaria

Th2 Cytokines

De-Sensitization

DAP-TLR4 INI-2004

INi-2004

Re-exposure

Th1 Cytokines

Allergen-specific IgG

Environment

Submucosa

Treatment is potentially curative due to re-programming of immune response.

Legend

Mucosal Layer Antigen Presenting Cell MHC Class II Protein & Epitope Th2-Cell B-Cell Cell with Mediators Allergen-specific IgE Allergen Allergen-specific IgG

INI-2004: Reduces key measures of allergy in a mouse model

- No eosinophil infiltration after allergen challenge in allergic mice treated with INI-2004
- Eosinophils are innate immune cells that drive allergy symptoms
- Lung airway resistance reduced to normal levels in mice treated with INI-2004
- Methacholine-induced lung irritation is significantly reduced by INI-2004 treatment

INI-2004: Phase I clinical trial for AR

Single Ascending Dose (SAD) Study: **Dosing complete**
Multiple Ascending Dose (MAD) Study: **Enrolling patients**

Phase 1 Results: SAD
- SAD study complete
- 4 dose cohorts of healthy volunteers, up to 500 µg INI-2004 administered IN
- INI-2004 well tolerated - no drug related serious adverse events

Phase 1: MAD
- Four weekly doses of INI-2004 given to subjects with confirmed ragweed allergy
 - 3 dose cohorts
 - 3 ragweed challenges with symptom measurement for initial efficacy measurements
- Cohort 1 enrolled and received initial dose
- Screening and enrollment continues for cohorts 2 and 3
Changing the Landscape of Immunotherapy: Cancer

The Challenges:

- Recent therapeutic breakthroughs, such as Checkpoint Inhibitors (CPI), only benefit a small minority of patients
- Best-case estimates ~43% of patients eligible for CPI therapy only ~12.5% of patients helped by these drugs

The Solution: INI-4001

- Pre-clinical mouse models demonstrate the efficacy of INI-4001
 - INI-4001 monotherapy cures 83% in LLC
 - Synergy with anti-PD-1 and increased cure rate (70-100%) in MC38 and B16F10
- Upcoming Phase 1 clinical trial
 - Open label, all solid tumors
 - Safety and efficacy of INI-4001 alone and in combination with CPI

Vision Research Reports, Cancer Immunotherapy Market, Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook 2021-2030
INI-4001 activates the innate immune system via TLR7/8 against cancer

The Solution: INI-4001

- Balanced TLR7 and TLR8 immunity profile
- Nanoparticle formulation enhances anti-tumor activity, maintaining high IFNα production while reducing pro-inflammatory TNFα
- Effective alone and in combination with anti-PD-1
Expanding CPI Efficacy in Combination with INI-4001

MC38 Tumor Model: Mouse colon cancer

Using a combination of INI-4001 + anti-PD-1, all mice were cured of MC38 tumors.

Similar results found in immunologically cold tumor model B16F10, a mouse melanoma cancer model.
INI-4001: Upcoming Phase 1 Overview

Dose Escalation and Dose Expansion Study: INI-4001 in patients with advanced solid tumors

Step 1: Dose escalation, INI-4001 monotherapy
- INI-4001, IV, once a week for 9 weeks
- Primary endpoint: safety and tolerability of INI-4001
- Secondary endpoints: efficacy and biomarker identification and analysis
- First patient in (FPI) January 2024

Step 2: Combination INI-4001 and CPI
- Combination INI-4001 and approved CPI for patients that progress on INI-4001 or achieve stable disease
- Primary endpoint: safety and tolerability of INI-4001
- Secondary endpoints: efficacy and biomarker identification and analysis
Opportunity: Seeking $60M Series B

We are actively seeking a lead series B investor who shares our vision to develop new, safe, and effective immunotherapies for the treatment and prevention of cancers, allergies, infectious and autoimmune diseases.

Advancing Opportunities
A full $60M series B would allow us to:
• Complete Phase 1 INI-4001 cancer clinical trial
• Conduct Phase 2 INI-2004 allergy clinical trial
• Advance SAS adjuvant into Phase I clinical trial
• Advance lead pre-clinical research programs in oncology and autoimmune disorders to IND
• Continue funding general overhead costs through 2025

Propelling Potential
After Phase 2 Clinical Trials (late 2025):
• Corporate partnership and licensing agreement(s)
• IPO or series C
• Merger and acquisition exit
Partnerships & Collaborations

Our partnerships with top universities and biotech companies drives innovative technology and has lead to over $150M in NIH funding

© 2023 Inimmune Corp. | Non-Confidential
Executive Team: Experienced Biotech & Industry Veterans

Alan Joslyn, Ph.D.,
Chief Executive Officer, & BOD Member

David Burkhart, Ph.D.,
Chief Operating Officer, Cofounder, & BOD Member

Jay Evans, Ph.D.,
Chief Scientific and Strategy Officer, Cofounder, & BOD Member

Mike Sullivan, CPA.,
Chief Financial Officer

Jon Ruckle, M.D.,
Chief Medical Officer

Helene Bazin-Lee, Ph.D.,
VP, Discovery, Cofounder, & BOD Member

Kendal Byter, Ph.D.,
VP, Manufacturing & Development, Cofounder

Lucy Tennant, M.S.,
VP, Clinical Operations

Michael Conger, J.D.,
VP, Legal & Business Strategy

© 2023 Inimmune Corp. | Non-Confidential
Scientific Advisory Board

James Allison, Ph.D.
Chair & Professor, Department of Immunology, MD Anderson Cancer Center
2018 Nobel Prize in Physiology or Medicine for the discovery of cancer therapy by inhibition of negative immune regulation

Padmanee Sharma, M.D., Ph.D.
Scientific Director, Immunotherapy Platform & Professor of Genitourinary Medical Oncology & Immunology, MD Anderson Cancer Center
Internationally renowned expert in CPI clinical trials

Jean-Paul Prieels, Ph.D.
Director: Ncardia, Nouscom, Leukocare, Bone Therapeutics, PDC*Line Pharma, and Quantoom Biosciences
Former Senior VP of R&D at GSK Biologicals

Thomas Casale, M.D.
Professor of Medicine & Pediatrics, USF
Chief of Clinical & Translational Research, Division of Allergy and Immunology
Former President, AAAAI
Contact Us
Alan Joslyn, PhD
CEO of Inimmune
alan.joslyn@inimmune.com
www.inimmune.com
1121 E Broadway St., Missoula, MT